Next Generation Datacenter Interfaces: Optics and Form Factors

Data Center Optical Interconnection Technology Summit Optical Communication Technology Development Forum 5 September 2019 Shenzhen, China Chris Cole

Outline

Datacenter Optics Rates

- Pluggable Form Factors
- Coherent in the Datacenter

Datacom (Ethernet) Gb/s Data Rates vs Time

Time		Datacom (Ethernet) Gb/s MAC Rates					
1990's - 2006	0.1	1	10			10	

Datacom (Ethernet) Gb/s Data Rates vs Time

Time		Datacom (Ethernet) Gb/s MAC Rates								
1990's - 2006	0.1	1	10			10				
2006 - 2007	0.1	1	10	100		10				

40Gb/s vs. 100Gb/s IEEE Debate

- 100Gb/s pro arguments
 - 10x is the <u>conventional</u> rate step, minimizing deployment cost by minimizing number of rate steps
 - 25GBaud technology (100G = 4x25G NRZ) investment focus will lead to lower cost in the long-term
- 40Gb/s pro arguments
 - 10GBaud technology (40G = 4x10G NRZ) is mature, ready for low-cost, low-risk, high-volume deployment
 - 40G has nearly 3x radix vs. 100G for 1.28T switch ASIC
 - 100Gb/s: 12x
 - 40Gb/s: 32x
 - Server I/O step after 10Gb/s
- Both rates were adopted by the IEEE, after 40G was identified as important for Datacenter applications

Datacom (Ethernet) Gb/s Data Rates vs Time

Time		Datacom (Ethernet) Gb/s MAC Rates							
1990's - 2006	0.1	1	10				10		
2006 - 2007	0.1	1	10	10 100					
2008 - 2013	1		10	40	100		4		

Datacom (Ethernet) Gb/s Data Rates vs Time

Time		Datacom (Ethernet) Gb/s MAC Rates							
1990's - 2006	0.1	1		10				10	
2006 - 2007	0.1	1		10	10	00		10	
2008 - 2013	1			10	40	100		4	
2014 - 2015	1		10	25	40	100	400	4	

200Gb/s vs. 400Gb/s IEEE Debate

- 400Gb/s pro arguments
 - 4x is the new <u>conventional</u> rate step, minimizing deployment cost by minimizing number of rate steps
 - 50GBaud technology (400G = 4x100G PAM4) investment focus will lead to lower cost in the long-term
- 200Gb/s pro arguments
 - 25GBaud technology (200G = 4x50G PAM4) is mature, ready for low-cost, low-risk, high-volume deployment
 - 200G has 2x radix vs. 400G for 12.8T switch ASIC
 - 400Gb/s: 32x
 - 200Gb/s: 64x (or for 100Gb/s: 128x)
 - Server I/O step after 100Gb/s
- Both rates were adopted by the IEEE, after 200G was identified as important for Mobile applications in China

Datacom (Ethernet) Gb/s Data Rates vs Time

Time		Datacom (Ethernet) Gb/s MAC Rates							
1990's - 2006	0.1	1	-	10					10
2006 - 2007	0.1	1		10	10	00			10
2008 - 2013	1		-	10	40	100			4
2014 - 2015	1		10	25	40	100	40	00	4
2016 to today	2.5	5	10	25	40 50	100	200	400	2

FINISAR

- AWS 400G-DR4 broken out to four 100G-DR
- Google Shifting from 100G to 200G in the form of 2x200G modules. 2x400G will be their next step.
- Facebook

New high-density 100G switch fabric for 4X capacity. Next step 200G.

Microsoft

Will deploy 400G inside data centers <u>after</u> 400ZR available to interconnect regional data centers

No clear plans to deploy true 400GbE for some time!

LightCounting High-Speed Ethernet Optics Report – April 2019 – page 12

Next High Volume Ethernet Data Rates

- Huge industry investment to support 400GbE as the next high volume Datacom rate will not see ROI for many years
- 1st Gen 400GbE optics will have small volume, primarily in telecom applications
- 200GbE is the next high volume Datacom rate
- Commonly used characterization of 200GbE as an "interim" step to 400GbE is meaningless
 - 200GbE is an "interim" step to 400GbE, just like 40GbE was an "interim" step to 100GbE
- 400GbE will be high volume when following is mature:
 - 100Gb/s lane SerDes
 - 7nm CMOS PHYs
 - Sufficient bandwidth TX to generate open PAM4 eyes

What's After 400Gb/s Ethernet?

• Future rates prediction based on 2x rate increases:

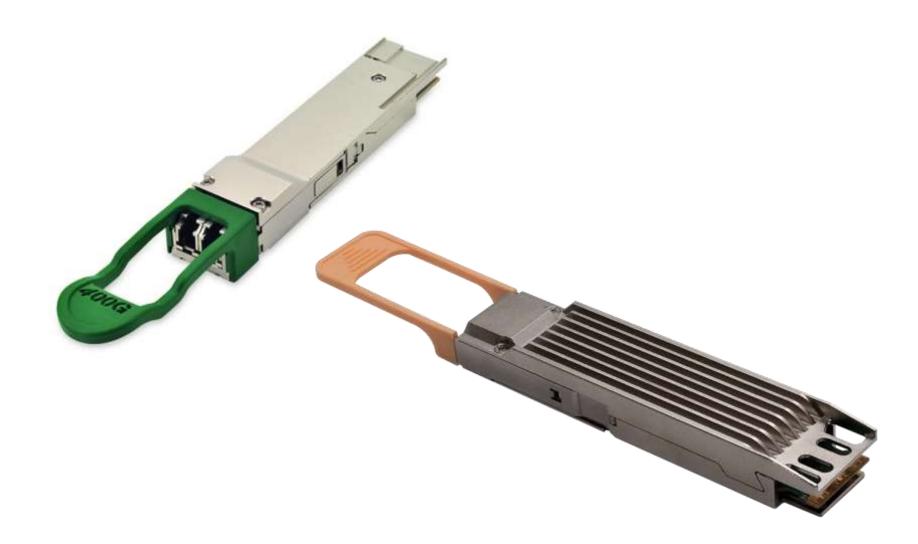
10	25	40/50	100	200	400	800	1600
----	----	-------	-----	-----	-----	-----	------

- Broad industry consensus that 800G is the next step
- Are we falling into the same conventional thinking trap?
- Could there be finer Ethernet rate increments than 2x?
- Transport no longer follows conventional fixed rate steps: Transport per λ rates: $100 \rightarrow 200 \rightarrow 300 \rightarrow 400 \rightarrow 500 \rightarrow 600 \rightarrow 800$
- Ethernet not likely to follow; the overhead is not worth it
- However, FlexEthernet could start to introduce sub-rating into the Datacenter

Outline

Datacenter Optics Rates

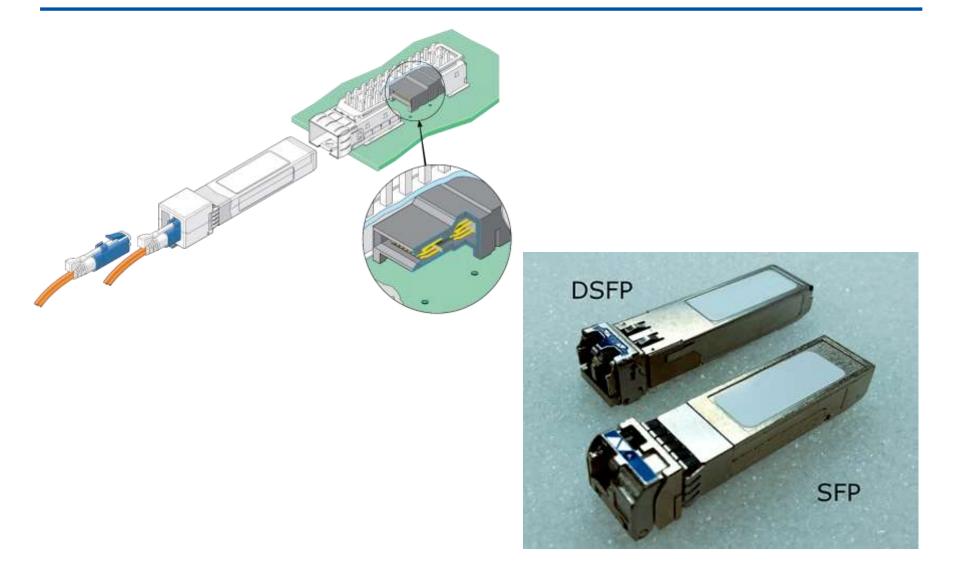
Pluggable Form Factors


Coherent in the Datacenter

Mainstream Pluggable Form Factor Evolution

I/O Count	10G I/O	25G I/O	50G I/O	100G I/O
			SFP56	SFP112
Single Dual	SFP+	SFP28	SFP-DD56	SFP-DD112
	Dual		DSFP	DSFP
			QSFP56	QSFP112
Quad Octal	QSFP+	QSFP28	QSFP-DD56	QSFP-DD112
Colui			OSFP	OSFP
Ten to Hex	CFP	CFP2	CFP8	CFP8

Other pluggable form factors: CXP, uQSFP, DSFP-DD


QSFP-DD & OSFP Form Factors

QSFP-DD vs. OSFP Comparison

Category	QSFP-DD	OSFP	Comments
Compatibility	QSFP+, QSFP28	none	
1 RU Front Ports	36x	32x	36x OSFP is marginally possible
Connector	Double row (76 contacts)	Single row (60 contacts)	OSFP connector is QSFP28 style
Signal Integrity (worst host lines)	28GBaud (56 PAM4)	56 GBaud (112 PAM4)	DD overfly leads degrade S.I.
Thermal interface power density	2x	1x	DD top surface roughness, flatness specs. are ~2x harder
Heat dissipation	35mm outside	inside	DD has similar thermal management issues as CXP
Hear Sink Configs.	ridding	ridding, integral	Integral sink has no temp. drop at module at interface
Internal volume	1x	2x	OSFP enables larger components
Cost	>1x	<1x	Connector, top surface, and internal volume drive cost

SFP-DD & DSFP Form Factors

SFP-DD vs. DSFP Comparison

Category	SFP-DD	DSFP	Comments
SW Compatibility	SFP+, SFP28	OSFP	
HW Compatibility	SFP+, SFP28	SFP+, SFP28	DSFP requires additional host circuits to support SFP+, SFP28
Control I/O	SFP+, SFP28	OSFP	see above
1 RU Front Ports	48x	48x	
Connector	Double row (40 contacts)	Single row (22 contacts)	DSFP connector is SFP28 style
Signal Integrity (worst host lines)	28GBaud (56 PAM4)	56 GBaud (112 PAM4)	DD overfly leads degrade S.I.
Host card depth	>>SFP+	SFP+	DD has double row connector (mobile and NIC issue)
Hear Sink Configs.	ridding	ridding	
Cost	>1x	<1x	Connector drives cost

Pluggable Available Technology Configurations

Switch BW Tb/s	Optical Rate Gb/s	Port Count	Port rows	Ports/ row	I/O Rate Gb/s	I/O Pin Count
1.28	40	32	2	16	10	512
3.2	100	32	2	16	25	512
12.8	100 200	128 64	2 2	64 32	50	1024
25.6	200	128	4	32	50	2048
25.6	200 400	128 64	2 2	64 32	100	1024
51.2	400	128	4	32	100	2048

Pluggable Form Factors Discussion

- Pluggable paradigm is viable for 12.8T, 25.6T and 51.2T
 Switch nodes using available technology
- This is at the cost of increasing SerDes power
- Possible new technologies that could extend the pluggable paradigm to 102.4T Switch node:
 - Low-cost flyover miniature copper cables
 - High-density Hex pluggable connector
 - Low-power 200G/lane SerDes
- For when the pluggable paradigm finally runs out of gas, optics industry is investigating new paradigms:
 - High-density on-board optics
 - Co-packaged optics w/ promise of 20-30% power savings

FINISAR

There is no consensus on how and when this will happen

Outline

- Datacenter Optics Rates
- Pluggable Form Factors

Coherent in the Datacenter

IMDD vs. Coherent in the Datacenter

10G/λ Transport: IMDD

(Intensity Modulation Direct Detection)

- 40G/λ Transport: IMDD and Coherent
- 100G/ λ and above Transport, \geq 80km links: Coherent
- 200G/λ ≥40km links: Coherent
- 400G/λ ≥25km links: Coherent
- Coherent advantages over IMDD:
 - Chromatic Dispersion (CD) and Polarization Mode Dispersion (PMD) compensation because of signal amplitude and phase recovery followed by DSP
 - Higher SNR because of RX front end LO mixing
- Conventional thinking is that Coherent will soon replace IMDD for links inside the datacenter

Datacenter Link Limits

- Longest internal link distance: 1km
- Example CWDM4 λs 1km SMF Spec Limits
- L0 λ: 1271nm (1264.5 to 1277.5nm span)
 - $\lambda_{min} = 1264.5 nm and \lambda_{zero_dispersion_max} = 1324 nm$:
 - CD = -6 ps/nm
 - PMD = 0.5 ps
 - Loss = 0.47dB
- L3 λ: 1331nm (1324.5 to 1337.5nm span)
 - $\lambda_{max} = 1337.5$ nm and $\lambda_{zero_dispersion_min} = 1304$ nm:
 - CD = 3 ps/nm
 - PMD = 0.5 ps
 - Loss = 0.43dB
- These values do not require compensation for IMDD links

SNR Comparison of IMDD vs. Coherent

Application	NRZ,	ection SNR PAM4	SNR Compare	Coherent SNR QPSK, QAM16 Implementation	
	•	entation		•	
	TX	RX		TX	RX
4dB typical datacenter link budget	EML, DML single λ or TFF, PLC WDM	PIN single λ or TFF, PLC WDM	>>	SiP	SiP
Laser AOP	single λ SiP	single λ SiP	>>	SiP	SiP
constrained	WDM SiP	WDM SiP	~	SiP	SiP
Transport	Any	Any	<<	SiP	SiP

C. Cole, "Direct Detection vs. Coherent SNR Inside the Datacenter," Will Coherent Optics Become a Reality for Intra-data Center Applications? Workshop, OFC 2019, San Diego, CA, 3 March 2019.

IMDD & Coherent in the Datacenter Discussion

- Conventional IMDD has better SNR than SiPIC Coherent for typical datacenter links
- Conventional thinking is not based on link analysis
- Coherent dispersion compensation processing is unnecessary and offers no advantages for these links
- Choice of IMDD or Coherent for the datacenter should only be based on specific implementation trade-offs
- Coherent maybe required inside the datacenter for high loss links (>10dB), for example those that include passive components like optical switches
- Outside the datacenter, for reaches >20km, Coherent advantages dominate

Next Generation Datacenter Interfaces

Thank You

